Set 6: Half Life

Time for Activity to 'Half' is the half life time. A_0 = Initial Activity A_T = Activity after a period of time $t_{1/2}$ = Half life time

Number of nuclei is directly related to the Activity (Bq)

6.1

- a. 22 hrs
- b. ½
- c. After 44 hours 2 half-life would have gone by.
 - $\frac{1}{2} \times \frac{1}{2}$ (2 half-lives) = $\frac{1}{4}$ of original radioisotope remaining.

6.2

In a graph use the Activity on the y axis. If the A_0 = Initial Activity (Bq) = 500 MBq and at an A_T = 250 MBq then one half-life would have gone by. Record the time on the x axis.

- a. $t_{1/2} = 6$ hrs
- b. From 500 MBq to 'about 2' MBq would require around 8 half-lifes to have gone by.

6.3

|--|

1 Half-life	2 Half-life's	3 Half-life's	4 Half-life's	4 half life's
1/2	$1/_2 \times 1/_2 = 1/_4$	$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$	$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = 1/16$	

 $t = n \times t_{1/2}$ = 4 × 30 = 120 years

6.4

$t_{1/2} = 14.3 \text{ days}$
$A_0 = 2.40 \text{ MBg}$

AT	$= A_0 \times \frac{1}{2}^n$
	$= 2.4 \times \frac{1}{2}^{3}$
	= 0.3 MBg

I Half-life	2 Halt-life's	3 Half-life's
14.3	28.6	42.9

6.5

 $t_{1/2} = ?$

 $A_0 = 2048$ Bq $A_T = 128$ counts / min = 2.133 Bq t = 150 mins

Half live	1	2	3	4	5	6	7	8	9	10
n										
$A_0 = 2048$	1024	512	256	128	64	32	16	8	4	2
Bq										

or

 $\begin{array}{l} A_T &= A_0 \times \sqrt[1]{2^n} \\ 2.1333 &= 2048 \times \sqrt[1]{2^n} \\ n &= 9.907 \end{array}$

Half-life = T/n = 150/9.907 = 15.1 mins (3sf)

6.6

 $t_{1/2} = 12 \text{ hrs}$ $A_0 = ? Bq$ $A_T = 800000 Bq$

a. t = 24 hrs before n = 2

 $\begin{array}{lll} A_{T} & = A_{0} \times \frac{1}{2^{n}} \\ A_{0} & = A_{T} / \frac{1}{2^{2}} \\ A_{0} & = 800000 / \frac{1}{4} \\ & = 3.20 \times 10^{6} \, \text{Bq (3sf)} \end{array}$

b. t = 24 hrs after n = 2 $A_T = A_0 \times \frac{1}{2}^2$ $A_T = 800000 \times \frac{1}{2}^2$ $= 2.00 \times 10^6$ Bq (3sf)

6.7

Number of atoms = 1.00×10^{24} t_{1/2} = 2.41×10^4 yrs

- a. After 1 half-life $0.5^1 \times 1.00 \times 10^{24} = 5.00 \times 10^{23}$ atoms
- b. With Alpha decay ensure the sum of nucleons are conserved and that the number of protons remains the same.

$$^{239}Pu_{94} \rightarrow {}^{4}He_2 + {}^{235}U_{92}$$

6.8

 $\begin{array}{l} t_{1/2} = 5.30 \mbox{ yrs} \\ A_0 = 800 \mbox{ GBq} \\ A_T = 128 \mbox{ counts / } min = 2.133 \mbox{ Bq} \end{array}$

a. t = 26.0 yrs n = 26/5.3 = 4.90 half-lives

Half live	1	2	3	4	5
n					
$A_0 = 800$	800	400	200	100	50
GBq					

b. $t_{1/2} = 5.3 \text{ yrs}$ $A_0 = 800 \text{ GBq}$ $A_T = 0.001 \times 800 \text{ GBq} = 0.8 \text{ GBq}$

Half live	1	2	3	4	5	6	7	8	9	10	11
n											
$A_0 = 800$	800	400	200	100	50	25	12.5	6.25	3.125	1.56	0.78
GBq											

After 10 half-lives

t =
$$n \times t_{1/2}$$

= 10×5.3 yrs
= 5 decades (1sf)

 $\begin{array}{ll} or & & \\ A_T & = A_0 \times \frac{1}{2^n} \\ 0.8 & = 800 \times \frac{1}{2^n} \\ n & = 9.965 \end{array}$

Half-life =
$$T/n$$

= 5.3/9.965
= 52.8 (3sf)
= 5 decades (1sf)

6.9

Given that there is the same number of nuclei, Sample X will have the higher activity as it has the lowest half-life. After 8 seconds half of the nuclei should have decayed thus more particles should be emitted and then detected.

6.10

$$t_{1/2} = 2.70 \text{ days}$$

 $A_0 = 8.00 \text{ MBq}$
 $A_T = ?$
 $t = 7.00 \text{ days}$

n = 7 / 2.7
= 2.60 half-lives
$$A_T = 1.5 \text{ MBq (2sf)}$$

or

$$A_{T} = A_{0} \times \frac{1}{2^{n}}$$

$$A_{0} = 8.00 \times \frac{1}{2^{2.6}}$$

$$A_{0} = 1.32 \text{ MBq (3sf)}$$

Half live	1	2	3
n			
$A_0 = 8.00$	4.00	2.00	1.00
MBq			

With Beta the number of protons will increase by 1 proton. The number of nucleons will still remain the same. Remember 1 neutron is changing into a proton and emitting an electron.

$$^{198}Au_{79} \rightarrow {}^{0}e_{-1} + {}^{198}Hg_{80}$$

6.11

There is less C-14 in old bone compared to new bone due to the fact the animal has long dies and as such stopped absorbing C-14 from the atmosphere.

6.12

$$A_{\rm T}/A_0 = 12.5 \% = 0.125$$

Half live	1	2	3	4
n				
%	50	25	12.5	6.25

6.13

- a. Use an Activity vs Time graph to determine half-five. Use the activity decrease to determine 3 half-life times. Average these times. $t_{1/2} = 20-21$ mins
- b. Likely to be Alpha. Beta and Gamma will still move through the Al foil.

6.14

a. With neutron bombardment add one nucleon on. Ensure remains same element.

$$^{24}Mg_{12} + {}^{1}n_0 \rightarrow {}^{25}Mg_{12}^*$$

 $^{25}Mg_{12}^* \rightarrow {}^{1}n_0 + {}^{24}Mg_{12} + Y$ (Gamma)

With Beta the number of protons will increase by 1 proton. The number of nucleons will still remain the same. Remember 1 neutron is changing into a proton and emitting an electron.

$$^{24}Mg_{12}^{*} \rightarrow {}^{0}e_{-1} + {}^{24}Na_{12}$$

b. 90% remaining means $A_T / A_0 = 0.9$

 $\begin{array}{lll} A_{T} &= A_{0} \times \frac{1/2^{n}}{2} \\ A_{T} / A_{0} &= 0.9 \times \frac{1/2^{n}}{2} \\ n &= 0.152 \\ t &= 0.152 \times t_{1/2} \\ &= 0.152 \times 15.0 \ \text{hrs} \\ &= 2.28 \ \text{hrs} \ (3sf) \end{array}$

6.15

a.

n =
$$20 \text{ days} / 4 \text{ days}$$

= 5 half-lives

$$A_{T} = A_{0} \times \frac{1}{2^{n}}$$

= 3.80 kBq × $\frac{1}{2^{5}}$
= 119 Bq (3sf)
= 100 Bq (1sf)

b.

More harmful?

Both are Alpha which is bad.

With higher activity Polonium would be worse if present in the body. A lot of energy released in a short period of time.

Radon is a gas so it can easily enter the lungs.

6.16

6.17

 $\begin{array}{ll} A_{T} / A_{0} &= 15 \ / \ 200 \\ \\ A_{T} &= A_{0} \times \frac{1}{2^{n}} \\ A_{T} / A_{0} &= 0.075 \times \frac{1}{2^{n}} \\ n &= 3.74 \\ \\ t &= 3.74 \times t_{1/2} \\ &= 3.74 \times 5730 \ yrs \\ &= 21413 \ yrs \\ &= 2.41 \times 10^{4} \ yrs \ (3sf) \end{array}$

6.18

- a. Because of the short half-lives, they will decay from the natural environment. May be present in extremely small amounts.
- b. Because they are naturally occurring and are usually part of a common decay sequence with the environment. Amount is continually being 'produced' from the decay of other naturally occurring isotopes.

