Set 6: Half Life

Time for Activity to 'Half' is the half life time. A_0 = Initial Activity A_T = Activity after a period of time $t_{1/2}$ = Half life time

Number of nuclei is directly related to the Activity (Bq)

6.1

- a. 22 hrs
- b. $\frac{1}{2}$
- c. After 44 hours 2 half-life would have gone by.
	- $\frac{1}{2} \times \frac{1}{2}$ (2 half-lives) = $\frac{1}{4}$ of original radioisotope remaining.

6.2

In a graph use the Activity on the y axis. If the A_0 = Initial Activity (Bq) = 500 MBq and at an A_T $= 250$ MBq then one half-life would have gone by. Record the time on the x axis.

- a. $t_{1/2} = 6$ hrs
- b. From 500 MBq to 'about 2' MBq would require around 8 half-lifes to have gone by.

6.3

 $t = n \times t_{1/2}$ $= 4 \times 30$ $= 120$ years

6.4

6.5

 $t_{1/2} = ?$ $A_0 = 2048$ Bq A_T = 128 counts / min = 2.133 Bq $t = 150$ mins

Half live 1 2 3 4 5 6 7 8 0 10

or

6.6

 $t_{1/2}$ = 12 hrs $A_0 = ?$ Bq $A_T = 800000 Bq$

a. $t = 24$ hrs before $n = 2$

> $A_T = A_0 \times \frac{1}{2}$ ⁿ $A_0 = A_T / \frac{1}{2^2}$ A $_0$ = 800000 / $\frac{1}{4}$ $= 3.20 \times 10^{6}$ Bq (3sf)

b. $t = 24$ hrs after $n = 2$ $A_T = A_0 \times \frac{1}{2^2}$ $A_T = 800000 \times \frac{1}{2}$ $= 2.00 \times 10^6$ Bq (3sf)

6.7

Number of atoms = 1.00×10^{24} $t_{1/2} = 2.41 \times 10^4$ yrs

- a. After 1 half-life $0.5^{1} \times 1.00 \times 10^{24} = 5.00 \times 10^{23}$ atoms
- b. With Alpha decay ensure the sum of nucleons are conserved and that the number of protons remains the same.

$$
^{239}\text{Pu}_{94} \rightarrow ^{4}\text{He}_{2} + ^{235}\text{U}_{92}
$$

6.8

 $t_{1/2} = 5.30$ yrs $A_0 = 800$ GBq A_T = 128 counts / min = 2.133 Bq

a. $t = 26.0$ yrs $n = 26/5.3 = 4.90$ half-lives

b. $t_{1/2} = 5.3$ yrs $A_0 = 800$ GBq $A_T = 0.001 \times 800$ GBq = 0.8 GBq

After 10 half-lives

$$
t = n \times t_{1/2}
$$

= 10 × 5.3 yrs
= 5 decades (1sf)

or $A_T = A_0 \times \frac{1}{2}^n$ $0.8 = 800 \times \frac{1}{2}$ ⁿ $n = 9.965$

Half-life = T/n = 5.3/9.965 = 52.8 (3sf) = 5 decades (1sf)

6.9

Given that there is the same number of nuclei, Sample X will have the higher activity as it has the lowest half-life. After 8 seconds half of the nuclei should have decayed thus more particles should be emitted and then detected.

6.10

$$
t_{1/2} = 2.70 \text{ days}
$$

\n $A_0 = 8.00 \text{ MBq}$
\n $A_T = ?$
\n $t = 7.00 \text{ days}$

n =
$$
7 / 2.7
$$

= 2.60 half-lives
A_T = 1.5 MBq (2sf)

or

$$
A_T = A_0 \times \frac{1}{2}^n
$$

\n
$$
A_0 = 8.00 \times \frac{1}{2}^{2.6}
$$

\n
$$
A_0 = 1.32 \text{ MBq (3sf)}
$$

With Beta the number of protons will increase by 1 proton. The number of nucleons will still remain the same. Remember 1 neutron is changing into a proton and emitting an electron.

$$
^{198}\text{Au}_{79} \rightarrow {^{0}e}_{.1} + {^{198}\text{Hg}_{80}}
$$

6.11

There is less C-14 in old bone compared to new bone due to the fact the animal has long dies and as such stopped absorbing C-14 from the atmosphere.

6.12

$$
A_T / A_0 = 12.5 \% = 0.125
$$

n = 3 t = 3 × t1/2 = 3 × 5730 yrs = 1.72 × 10⁴ yrs

6.13

- a. Use an Activity vs Time graph to determine half-five. Use the activity decrease to determine 3 half-life times. Average these times. $t_{1/2}$ = 20-21 mins
- b. Likely to be Alpha. Beta and Gamma will still move through the Al foil.

6.14

a.With neutron bombardment add one nucleon on. Ensure remains same element.

²⁴Mg₁₂ + ¹n₀
$$
\rightarrow
$$
 ²⁵Mg₁₂^{*}
²⁵Mg₁₂^{*} \rightarrow ¹n₀ + ²⁴Mg₁₂ + *Y* (Gamma)

With Beta the number of protons will increase by 1 proton. The number of nucleons will still remain the same. Remember 1 neutron is changing into a proton and emitting an electron.

$$
^{24}M{g_{12}}^*\ \rightarrow\ ^0e_{\text{-}1}\ \ +\ ^{24}Na_{12}
$$

b. 90% remaining means $A_T / A_0 = 0.9$

 $A_T = A_0 \times \frac{1}{2}$ ⁿ $A_T / A_0 = 0.9 \times \frac{1}{2}$ ⁿ $n = 0.152$ t = $0.152 \times t_{1/2}$ $= 0.152 \times 15.0$ hrs $= 2.28$ hrs (3sf)

6.15

a. n = 20 days / 4 days = 5 half-lives

$$
AT = A0 × \frac{1}{2}n
$$

= 3.80 kBq × \frac{1}{2}⁵
= 119 Bq (3sf)
= 100 Bq (1sf)

b.

More harmful?

Both are Alpha which is bad.

With higher activity Polonium would be worse if present in the body. A lot of energy released in a short period of time.

Radon is a gas so it can easily enter the lungs.

6.16

$$
A_T = A_0 \times \frac{1}{2^n}
$$

\n
$$
A_T / A_0 = 0.95 \times \frac{1}{2^n}
$$

\n
$$
n = 0.07400
$$

\n
$$
t = 0.07400 \times t_{1/2}
$$

\n
$$
= 0.07400 \times 28.9 \text{ yrs}
$$

\n
$$
= 2.13 \text{ yrs}
$$

6.17

 $A_T / A_0 = 15 / 200$ $A_{T} = A_{0} \times \frac{1}{2}^{n}$ $A_T / A_0 = 0.075 \times \frac{1}{2}$ $n = 3.74$ t = $3.74 \times t_{1/2}$ $= 3.74 \times 5730$ yrs $= 21413 \text{ yrs}$ $= 2.41 \times 10^4$ yrs (3sf)

6.18

- a. Because of the short half-lives, they will decay from the natural environment. May be present in extremely small amounts.
- b. Because they are naturally occurring and are usually part of a common decay sequence with the environment. Amount is continually being 'produced' from the decay of other naturally occurring isotopes.

